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Why this topic?

We want
an efficient kinetic model that can describe non-equilibrium
dilute, dense gases and if possible, phase transition to liquids.

DSMC based methods (ESMC, ...) become too expensive at high
densities.

We need an accurate mathematical model whose computational
cost has no correlation with density.

Applications: unconventional gas reservoirs, high pressure shock
tubes, Sonoluminescence, and interface of liquid-vapor at supercritical
pressures.
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Collision in dilute .vs. dense gases

Dilute

Point particle:
Boltzmann collision operator

Dense

Particles with Sutherland potential:
Enskog collision operator

+ attraction.
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Enskog equation1

Enskog modified Boltzmann equation in order to include dense effects

∂F
∂t

+
∂(FVi )

∂xi
= SEnsk , (2.1)

where

SEnsk =

∫
R3

∫ 2π

0

∫ +∞

0

[
Y (x +

1

2
σk̂)F(V∗, x)F(V∗1, x + σk̂)

− Y (x− 1

2
σk̂)F(V, x)F(V1, x− σk̂)

]
gb̂db̂d ε̂d3V1. (2.2)

b̂, ε̂ and k̂ specify collision cross
section.

σ: effective diameter of particles.

Y : pair correlation function.
∗ : post-collision state.

1
see Chapman, S., & Cowling, T. (1953) and Hirschfelder, J. et al. (1963).
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Current Monte-Carlo methods

Modifying DSMC (ESMC2and Frezzotti’s algorithm3) such that:

Collision rate is increased by the factor Y , i.e.

ωij/∆t = 4πσ2(k.gij)Y (x + σ/2k̂)nJ (2.3)

Colliding pair is selected from cells that enclose x and x + σk̂.

Problem

Computational complexity of DSMC-based methods increases with density
since collision rate of HS is ωij/∆t = 4πσ2(k.gij)Y (x + σ/2k̂)nJ .

2
see Montanero, J. M., & Santos, A., Physical Review E 54, no. 1 (1996): 438.

3
see Frezzotti, A. Physics of Fluids 9, no. 5 (1997): 1329-1335.
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Fokker-Planck model

Consider an Itô process

dp = Ãdt + λdW, (2.4)

where W is a Wiener process. Itô calculus provides us the equivalent
Fokker-Planck equation4

∂F
∂t

+
∂(FVi )

∂xi
= −∂(FAi )

∂Vi
+

1

2

∂2

∂Vi∂Vj
(DikDkjF). (2.5)

Drift and diffusion

A and D are called drift and diffusion coefficients, respectively. They are
set to give an approximation of a generic collision operator.

4
see Gardiner, C. W. (1996).
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Homogeneous relaxation rates of Enskog equation

Let us write Enskog operator using the decomposition

SEnsk = Y (x)SBoltz + Sφ (2.6)

where Sφ includes all spatial dependency of F and Y in x.

Relaxation rates of shear stress and heat fluxes then become

∂πij
∂t

∣∣∣
coll

= −Y
p

µkin
πij (2.7)

and
∂qi

∂t

∣∣∣
coll

= −Y
2

3

p

µkin
qi . (2.8)

Drift A and diffusion D can be modelled by a cubic FP model
proposed by Gorji et al. 5 with modifications for dense gases.

5
Gorji, M. H. and Torrilhon, M. and Jenny, P., Journal of fluid mechanics 680 (2011): 574-601.
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Conservation equations of Enskog equation

Taking velocity moment ψ ∈ {1,Vj ,VjVj/2} of expanded Enskog
equation leads to∫

R3

ψ
(∂F
∂t

+ Vi
∂F
∂xi

)
d3V = −

∂Ψφ
i

∂xi
. (2.9)

where Ψφ is called collsional transfer and is defined by

Ψφ
i =

Y σ

2

∫ ∫ ∫ ∫
(ψ∗ − ψ)FF1kigb̂db̂d ε̂d3V1d3V︸ ︷︷ ︸

I1

+
Y σ2

4

∫ ∫ ∫ ∫
(ψ∗ − ψ)FF1

∂

∂xj
ln(
F
F1

)kikjgb̂db̂d ε̂d3V1d3V︸ ︷︷ ︸
I2

+ ... (2.10)

Unlike Boltzmann, moments of Enskog operator for momentum and
energy do not vanish! → collisional transfer
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Assuming Maxwellian F in I2(ψ) and ignoring higher order terms

ptot = (1 + nbY )nkT︸ ︷︷ ︸
=I1

−w
∂Uk

∂xk︸ ︷︷ ︸
≈I2

, (2.11)

πtot
ij = (1 + 2nbY /5)πij︸ ︷︷ ︸

=I1

− (5w/6)
∂U〈i
∂xj〉︸ ︷︷ ︸

≈I2

(2.12)

and

qtot
i = (1 + 3nbY /5)qi︸ ︷︷ ︸

=I1

− cvw
∂T

∂xi︸ ︷︷ ︸
≈I2

(2.13)

with w = (nb)2Y
√

mkT/(π3/2σ2) being bulk viscosity.

We use these expressions to correct total pressure tensor and total
heat fluxes in FP of dense gases.
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FP with collisional transfer

Collisional transfer promotes idea of extra streaming

∂F
∂t

+
∂(FVi )

∂xi
= −∂(FAi )

∂Vi
+

1

2

∂2(D2F)

∂Vj∂Vj
−∂(FÂi )

∂xi
. (2.14)

What is Â?
Answer: Â is a spatial drift which should be set such that moments
of FP matches moments of Enskog, i.e. provides correction to total
pressure tensor and heat fluxes.

In this study, we proposed a cubic model for Â, i.e.

Âi = ĉijv
′
j + γ̂i

(
v ′j v
′
j −

3kT

m

)
+ Λ̂

(
v ′i v
′
j v
′
j −

2qi

ρ

)
(2.15)

where Λ̂ = −εnbY /(kT/m) is set to avoid instabilities of SDEs.

Mohsen Sadr (RWTH Aachen University) A Fokker-Planck description of dense flows February 26, 2018 11 / 15



Cubic FP: conservation equations

Mass conservation:

∂ρ

∂t
+
∂(ρUi )

∂xi
= 0 . (2.16)

Momentum conservation:

∂

∂t
(ρUi ) +

∂

∂xj
(ρUiUj) +

∂

∂xj
(πij + pδij)

+
∂

∂xj

∫
R3

ÂjViFd3V = 0 . (2.17)

Energy conservation:

∂E

∂t
+

∂

∂xi
(EUi + qi + pδikUk + πikUk)

+
1

2

∂

∂xi

∫
R3

ÂiVkVkFd3V = 0. (2.18)
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Equilibrium Pressure

Iso-thermal walls with Tw = 273 K .

Equilibrium pressure can be calculated based on its fundamental
definition.
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Lid-driven cavity

Temperature contours and heat fluxes of the lid-driven cavity flow at
Kn = 0.1, nb = 0.1 and Uw = 300 m/s.

(a) FP (b) ESMC
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Conclusion

We proposed a Fokker-Planck model suitable for dense gases.

Dense gas effects were captured by introducing a drift in physical
space.

Several examples showed the accuracy of model in capturing total
pressure, shear stress and heat fluxes.

Future studies:

- Obtaining higher order approximation of collisional transfer.
- Including attractive part of molecular potential.
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Thanks for your attention.
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Why this topic?

We want
an efficient model that can describe non-equilibrium dilute,
dense gases and if possible, liquid.

DSMC based methods, such as ESMC and CBA, are too expensive.

Since collisions are not explicitly calculated in FP model, it is shown
to be more efficient than DSMC based methods as Knudsen number
decreases which encourages us to extend it for dense gases as well.

We need a accurate mathematical model that its computational
cost has no correlation with density.

Applications: unconventional gas reservoirs[1], high pressure shock
tubes[2], Sonoluminescence[3] and interface of liquid-vapor at
supercritical pressures[4, 5, 6].
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Kinetic Theory

Let us consider the sample space of V and x.

Macroscopic properties can be determined by probability density
function f (V; x, t), i.e. probability density of finding a particle close
to the velocity V and conditional on x− t.

Here, velocity distribution function (VDF) F(V, x, t) is employed
where

F(V, x, t) = ρ(x, t)f (V; x, t), (5.1)

Mohsen Sadr (RWTH Aachen University) A Fokker-Planck description of dense flows February 26, 2018 23 / 15



Kinetic Theory

Kinetic Theory provides macroscopic properties as functions of VDF

ρ(x, t) =

∫
R3

Fd3V, (5.2)

〈ψ(M)〉 =
1

ρ

∫
R3

φ(V)Fd3V, (5.3)

Ui =
1

ρ

∫
R3

FVid
3V, (5.4)

T =
1

3nkb

∫
R3

Fv ′j v
′
j d

3V, (5.5)

πij =

∫
R3

Fv ′〈iv
′
j〉d

3V and (5.6)

qi =
1

2

∫
R3

Fv ′i v
′
j v
′
j d

3V. (5.7)
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Kinetic Theory

If we know evolution of F , we know future macroscopic states
of the system.

Generic form of the evolution of distribution function of each particle
in non-equilibrium gas

∂F
∂t

+
∂(FVi )

∂xi
+
∂(FGi )

∂Vi
= Scoll(F) . (5.8)

Scoll(F) collision operator accounting for the binary collisions among
molecules and G the external force.

Scoll(F) is the Boltzmann operator for dilute gas and the Enskog
operator for dense gases.
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Enskog operator6

With simple modification to the Boltzmann operator

SEnskog =

∫
R3

∫ 2π

0

∫ +∞

0

[
Y (x +

1

2
σk̂)F(V∗, x)F(V∗1, x + σk̂)

− Y (x− 1

2
σk̂)F(V, x)F(V1, x− σk̂)

]
gb̂db̂d ε̂d3V1,

(5.9)

where

Y = 1 + 0.625nb + 0.2869(nb)2 + 0.115(nb)3 and (5.10)

b =
2

3
πσ3. (5.11)

Assumptions:
1- Volume occupied by the molecules becomes comparable with the whole

volume of the gas which leads to the factor Y in collision rate.
2- VDF of colliding pair must be in vicinity of each other, exactly σ for

HS, for collisions to happen.
6

see Chapman and Cowling (1953) [7] and Hirschfelder et al. (1963) [8].
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From statistical mechanics, the virial expansion of pressure can be
obtained by

Z :=
p

nkT
= 1 + B2n + B3n2 + B4n2..., (5.12)

BN =
1− N

N!
lim
V→0

V−1

∫
...

∫
dr1...drNVN , (5.13)

VN =
∑ N∏

i<j

fij (5.14)

and fij = exp(−φij/kT )− 1, (5.15)

where φij is molecular potential between particles i and j .
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The factor Y (which comes form virial expansion)

Y :=
Z − 1

nb
(5.16)

for hard-sphere can be calculated exactly as done by Ree-Hoover [13]

Y = 1 + 0.625nb + 0.2869(nb)2 + 0.115(nb)3 + ... (5.17)

or approximated by a closed expression as suggested by Carnahan-Starling
[14]

Y CS =
1− nb/8

(1− nb/4)3
. (5.18)
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Now we know what we want to solve.

Boltzmann and Enskog equations are difficult to solve directly due to
high dimensionalily of F(V, x, t).

Monte-Carlo methods are suggested in literature as an efficient yet
accurate alternative compared to direct solution method and moment
approach.
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Direct Simulation Monte Carlo (DSMC8)

Positions and velocities are updated in two steps:
streaming and collision.

Collision involves picking Λcoll couple of particles as candidates

Λmax = FNN2
Cπσ

2Mr ,max∆t/Vc . (5.19)

Selected pair collide if

Mr/Mr ,max > r , (5.20)

then velocities change such that

Mpost
r = Mpost

r (cosθ, sinθcosφ, sinθsinφ)T , (5.21)

φ = 2πα1 and (5.22)

cosθ = 1− 2α2, (5.23)

with α1 and α2 being uniform random numbers between zero and one.

DSMC is proven to be consistent with the Boltzmann equation7.
7

Wanger (1992) [15].
8

Bird (1963) [16].
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Consistent Boltzmann Algorithm (CBA9)

With two modifications in DSMC, one can model dense gas!

Collision rate needs to be increased by Y ,

ΛCBA = Y FNN2
Cπσ

2Mr ,max∆t/Vc . (5.24)

Additional advection due to diameter effect in streaming

d =
M∗r −Mr

||M∗r −Mr ||2
σ, (5.25)

X1 = M1∆t+d and (5.26)

X2 = M2∆t−d. (5.27)

CBA loses consistency as density increases (nσ3 > 0.4).

Complexity of Monte Carlo methods

Complexity scales with O(n2), where n is number density.
9

see Alexander et al. (1995) [17].
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Enskog Simulation Monte-Carlo (ESMC10)

ESMC was proposed as an accurate solution to Enskog equation.

Collision rate is increased by a Y factor, i.e. ΛEnsk = Y ΛBoltz .

Modification in selection of collision pair:

- Pick a particle (xi ) at random.
- Pick a random direction σ̂. Then, find the second particle (xj) in the

cell that xi + σσ̂ exists.
- Find Y at the mid point and update ΛEnsk if necessary. Calculate

Γ = 4πσ2(Mr.σ̂)Ymid∆t.
- If Γ/Γmax > r , accept the collision and set M∗

i = Mi − (Mr.σ̂)σ̂.

Complexity of Monte Carlo methods

Complexity scales with O(n2), where n is number density.

10
see Montanero and Santos (1996) [9].
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As mentioned, computational cost of DSMC’s based methods
increases as gas gets denser.

It is because collision rate increases with density.

However, FP model does not suffer from this problem.

Therefore, it is worth expanding FP model for dense gases.
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Review: Fokker-Planck model for ideal gas

For an Itô process

dp = Ãdt + λdW, (5.28)

where W is a Wiener process and

p =


M1
M2
M3
X1
X2
X3

 , λ =

D11 D12 D13 0 0 0
D21 D22 D23 0 0 0
D31 D32 D33 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 and Ã =


A1
A2
A3
M1
M2
M3

 , (5.29)

Itô calculus provides us the equivalent Fokker-Planck equation11

∂F
∂t

+
∂(FVi )

∂xi
= −∂(FAi )

∂Vi
+

1

2

∂2

∂Vi∂Vj
(DikDkjF). (5.30)

Drift and diffusion

Ai and Dij are called drift and diffusion coefficients, respectively. They are
set to give stochastics of Scoll .

11
see Gardiner (1996) [11].
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Review: linear FP for ideal gas

Jenny et al. (2010) [18] considered a Langevin model

Ai = −1

τ
v ′i and Dij =

√
2kT

τm
δij , (5.31)

with τ = 2µkin/p.

Linear model is consistent with the Boltzmann equation up to second
velocity moment, i.e. ψ ∈ {1,Vi ,ViVj}.
It was shown that the linear FP produces inconsistent relaxation rates
for shear stress and heat fluxes, consequently inconsistent Prandtl
number in hydrodynamic limit.
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Review: cubic FP model for ideal gas

In order to provide consistent relaxation rates, Cubic FP was designed
by Gorji et al. (2011) [12]

Ai = cijv
′
j + γi

(
v ′j v
′
j −

3kT

m

)
+ Λ

(
v ′i v
′
j v
′
j −

2qi

ρ

)
, (5.32)

Dij =

√
2kT

τm
δij and (5.33)

τ = 2µkin/p , (5.34)

where coefficients of higher order terms c and γ are set satisfying
homogeneous relaxation rates12,

∂πij
∂t

= −p

µ
πij and (5.35)

∂qi

∂t
= −2

3

p

µ
qi . (5.36)

12
see Truesdell and Muncaster (1980) [19].
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Conditions on any Scoll describing monatomic dilute gas:

Scoll must conserve mass, momentum an energy i.e. for any
Ψcons ∈ {1,Vi ,VjVj}∫

R3

ΨconsScoll(F)d3V = 0 for any F . (5.37)

Considering a homogeneous setting, the equilibrium is a Maxwellian
distribution

S(F) = 0→ F = FM . (5.38)

In order to obtain identical transport properties∫
R3

ΨSmodel(F)d3V =

∫
R3

ΨScoll(F)d3V, (5.39)

where Ψ = {ViVj ,ViVjVk , ...,Vi1 ...ViM}.
Relaxation rates of the shear stress and the heat fluxes must be13

∂πij
∂t

= −P

µ
πij and (5.40)

∂qi

∂t
= −2

3

P

µ
qi . (5.41)
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A Fokker-Planck model for dense gases
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Homogeneous relaxation rates of Enskog equation

Let us simplify Enskog operator using the decomposition

SEnskog = Y (x)SBoltz + Sφ (6.1)

where Sφ includes all derivative of F and Y in x.

Relaxation rates of shear stress and heat fluxes then become

∂πij
∂t

= −Y
p

µkin
πij (6.2)

and
∂qi

∂t
= −Y

2

3

p

µkin
qi , (6.3)

Drift and diffusion coefficients of cubic model of A must satisfy this
relaxation rates for dense gases.

Spatial dependence of Enskog operator needs to be modeled.
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Conservation equations of Enskog equation

Taking velocity moments ψ ∈ {1,Vj ,VjVj/2} of SEnsk

J =

∫
R3

ψSEnskd3V. (6.4)

Deploying Taylor expansion near x for F and Y

J = J0 + J1 + J2 + ... (6.5)

where for Y = Y (x), F = F(V∗, x) and F1 = F(V∗1, x)

J0 = 0, (6.6)

J1 = − ∂

∂xi

[σ
2

∫ ∫ ∫ ∫
(ψ∗ − ψ)YFF1kigb̂db̂d ε̂d3V1d3V

]
, (6.7)

J2 = − ∂

∂xi

[σ2

4

∫ ∫ ∫ ∫
(ψ∗ − ψ)YFF1

∂

∂xj
(ln
F
F1

)kikjgb̂db̂d ε̂d3V1d3V
]
.

(6.8)
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Conservation equations of Enskog equation

Taking velocity moment ψ ∈ {1,Vj ,VjVj/2} of expanded Enskog
equation leads to∫

R3

ψ
(∂F
∂t

+ Vi
∂F
∂xi

)
d3V = −

∂Ψφ
i

∂xi
. (6.9)

By keeping only first derivatives in Taylor expansion, one can show

Ψφ
i =

Y σ

2

∫ ∫ ∫ ∫
(ψ∗ − ψ)FF1gb̂db̂d ε̂d3V1d3V

+
Y σ2

4

∫ ∫ ∫ ∫
(ψ∗ − ψ)kiFF1

∂

∂xi
ln(
F
F1

)gb̂db̂d ε̂d3V1d3V.

(6.10)

Unlike Boltzmann, moments of Enskog operator does not vanish!
This contribution is called Collisional Transfer.
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Ψφ
i is approximated by Chapmann and Cowling14

- Ignoring Higher order terms.
- ∂xln(F/F1) ≈ ∂xln(F0/F0

1 ), where F0 is the Maxwelllian VDF.

Mass Conservation:

∂ρ

∂t
+

∂

∂xj
(ρUj) = 0. (6.11)

Momentum Conservation:

∂

∂t
(ρUi ) +

∂

∂xj

(
ρUiUj + πtotij + ptotδij

)
= 0. (6.12)

Energy Conservation:

∂E

∂t
+

∂

∂xi

(
EUi + qtot

i + ptotδikUk + πtotik Uk

)
= 0, (6.13)

where E = ρcvT + 1
2ρUkUk and cv = 3k/(2m).

14
see Chapman and Cowling (1953) [7]
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Therefore, total pressure tensor and heat fluxes can be derived

ptot = nkT (1 + nbY )− w
∂Uk

∂xk
, (6.14)

πtot
ij = (1 + 2nbY /5)πij − (5w/6)

∂U〈i
∂xj〉

(6.15)

and

qtot
i = (1 + 3nbY /5)qi − cvw

∂T

∂xi
. (6.16)

with w = (nb)2Y
√

mkT/(π3/2σ2) being bulk effect.

We use these expressions to correct pressure tensor and heat fluxes in
FP of dense gases.
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FP of dense gases - Modification in Velocity Update

To guarantee relaxation rates of Enskog operator

∂πij
∂t

= −Y
p

µ
πij and (6.17)

∂qi

∂t
= −Y

2

3

p

µ
qi , (6.18)

Cubic drift A for dense gas should now satisfy

ρ〈AiM
′
j + AjM

′
i + D2δij〉 = −Y

P

µ
πij and (6.19)

ρ〈AiM
′
jM
′
j + 2AjM

′
jM
′
i 〉 = −Y

2

3

p

µ
qi . (6.20)
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FP with collisional transfer

Collisional transfer promotes idea of extra streaming

∂F
∂t

+
∂(FVi )

∂xi
= −∂(FAi )

∂Vi
+

1

2

∂2(D2F)

∂Vj∂Vj
−∂(FÂi )

∂xi
. (6.21)

What is Â?
Answer: Â is a spatial drift which should be set such that moments
of FP matches moments of Enskog, i.e. provides correction to total
pressure tensor and heat fluxes.

In this study, we proposed a linear and a cubic model for Â.
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Linear DFP

Consider the linear ansatz Â

Âi = αv ′i . (6.22)

Conservation of mass:

∂ρ

∂t
+
∂(ρUi )

∂xi
= 0 . (6.23)

Conservation of momentum:

∂(ρUi )

∂t
+

∂

∂xj
(ρUiUj + πij + pδij) +

∂

∂xj

∫
R3

ÂjViFd3V = 0 .(6.24)

Total pressure ptot of Enskog equation can be achieved by setting

α = nbY − w

nkT

∂Ui

∂xi
. (6.25)
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Cubic DFP

Consider a cubic model for Â

Âi = ĉijv
′
j + γ̂i

(
v ′j v
′
j −

3kT

m

)
+Λ̂
(

v ′i v
′
j v
′
j −

2qi

ρ

)
(6.26)

where quadratic term is used to set total heat flux and cubic term
with Λ̂ = −εnbY /(kT/m) is set to avoid instabilities of SDEs15.

Conservation of mass

∂ρ

∂t
+
∂(ρUi )

∂xi
= 0 . (6.27)

15
see Risken (1989) [20].
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Cubic DFP: conservation of momentum

First velocity moment of DFP leads to

∂

∂t
(ρUi ) +

∂

∂xj
(ρUiUj) +

∂

∂xj
(πij + pδij)

+
∂

∂xj

(
ĉjkπik + ĉjip + 2γ̂jqi + ρΛ̂u

(2)
ij

)
= 0 . (6.28)

Coefficients of spatial drift ĉ and γ̂ are set to obtain total pressure
and stress tensor of Enskog equation

ĉjkπik + ĉjip + 2γ̂jqi = −ρΛ̂u
(2)
ij

+ nbY (pδij + 2/5πij)− w

(
∂Uk

∂xk
δij +

5

6

∂U〈i
∂xj〉

)
.(6.29)
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Cubic DFP: conservation of energy

Second velocity moment of DFP provides

∂E

∂t
+

∂

∂xi
(EUi + qi + pδikUk + πikUk)

+
1

2

∂

∂xi

∫
R3

ÂiVkVkFd3V = 0. (6.30)

Substituting Â, one can set heat fluxes of DFP to match qtot

ĉijqj +
1

2
ργ̂i

(
u(4) − (u(2))2

)
=

3

5
nbYqi − wcv

∂T

∂xi
− 1

2
ρΛ̂
(

u
(4)
i − u

(2)
i u(2)

)
. (6.31)
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Cubic FP: coefficients

From momentum conservation

ĉjkπik + ĉjip + 2γ̂jqi = −ρΛ̂u
(2)
ij

+ nbY (pδij + 2/5πij)− w

(
∂Uk

∂xk
δij +

5

6

∂U〈i
∂xj〉

)
.(6.32)

From energy conservation:

ĉijqj +
1

2
ργ̂i

(
u(4) − (u(2))2

)
=

3

5
nbYqi − wcv

∂T

∂xi
− 1

2
ρΛ̂
(

u
(4)
i − u

(2)
i u(2)

)
. (6.33)
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Notation

Following notation was used in the formulations.

u
(k)
i1...in

=
1

ρ

∫
R3

|v′|kv ′i1v ′i2 ...v
′
inFd3V. (6.34)

Mohsen Sadr (RWTH Aachen University) A Fokker-Planck description of dense flows February 26, 2018 51 / 15



Outline

4 Introduction
Motivation
Kinetic Theory
Monte-Carlo Methods
Review: Fokker-Planck model for ideal gas

5 FP model for dense gas
Investigating Enskog operator
Modification in Evolution of Velocity
Modification in Evolution of Position
Reduction to SDEs
Numerical Scheme

6 Validation Studies
Setup
Equilibrium Pressure
Couette Flow
Fourier Flow

7 Conclusion and Outlooks
Mohsen Sadr (RWTH Aachen University) A Fokker-Planck description of dense flows February 26, 2018 51 / 15



Reduction to SDEs

Using Itô calculus, equivalent Itô process of DFP is

dp = Ãdt + λdW, (6.35)

where W is a Wiener process and

p =


M1
M2
M3
X1
X2
X3

 , λ =

D 0 0 0 0 0
0 D 0 0 0 0
0 0 D 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 and Ã =


A1
A2
A3

M1+Â1

M2+Â2

M3+Â3

 . (6.36)
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Numerical Scheme

Explicit scheme for velocity update16, and Euler method for position
update are employed as in

Mn+1
i = Un

i + αcell

(
M ′ni e−∆tY /τ + cikM ′nk + γi (M ′nk M ′nk − 3kT/m)

+ Λ(M ′ni M ′nj M ′nj − 〈M ′ni M ′nj M ′nj 〉) +

√
2kTY

τm
ξi

)
and (6.37)

X n+1
i = X n

i + Mn
i ∆t +

(
ĉijM

′n
j + γ̂(M ′nj M ′nj − 3kT/m)

+ Λ̂(M ′ni M ′nj M ′nj − 〈M ′ni M ′nj M ′nj 〉)
)

∆t. (6.38)

αcell makes sure that kinetic energy in each cell is conserved,

αcell =
〈M ′nk M ′nk 〉
〈M ′n+1

k M ′n+1
k 〉

. (6.39)

16
similar to Gorji and Jenny (2014) [21].
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Setup

Consider a gas contained in a box with iso-thermal walls that can be
moved. Velocity of particles hitting the walls in x2 are set to the
velocity of equilibrium distribution on the face17, i.e.

M1 =

√
kbTw

m
N (0, 1)± Uw , (7.1)

M2 = ±
√

2kbTw

m

√
−ln
(
R(0, 1)

)
and

(7.2)

M3 =

√
kbTw

m
N (0, 1). (7.3)

17
see Bird (1994) [22].
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Setup

In all simulations, Argon is used with18

µ [kg .m−1.s−1] ω [−] σ [m] m [kg ] κ [W .m−1.K−1]
2.117× 10−5 0.5 3.628× 10−10 6.633× 10−26 0.01625

Time step is picked based on CFL condition19

∆t = 0.05
min(λ, L/nc)

max(Uw ,Uth)
(7.4)

for DSMC’s based methods and

∆t = 0.05
L/nc

max(Uw ,Uth)
(7.5)

for FP based methods.

18
see Bird (1963) [22].

19
see Gorji and Jenny (2015) [23].
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Equilibrium Pressure

Iso-thermal constant walls with Tw = 273 K .
Pressure can be calculated based on its fundamental definition

p =
1

At f

( tf∑
t=0

Nc∑
j=1

∆(mMj)
)
. (7.6)

Dashed and solid lines are p = nkT and p = nkT (1 + nbY ).
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Couette flow

Iso-thermal walls at T = 273 K are moved Uw = (±150, 0, 0)T [m/s].
Here, Kn = 0.01 and nb = 0.5.
Convergence studies on the spatial refinement lead us to 100
computational cells in x2. 1000 particles per cell are employed.
Solid lines µtot

0 = µkin
0 (1 + 2n0bY0/5)2/Y0 + 3w0/5 and dashed line

indicates µkin.
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Fourier flow

Iso-thermal constant walls with Tw1 = 300 K and Tw2 = 500 K .

Here, Kn = 0.01 and nb = 0.5.

Convergence studies gives us 100 cells in x2.

Solid lines κtot
0 = κkin

0 (1 + 3n0bY0/5)2/Y0 + w0cv and dashed line
indicates κkin

0 .
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Conclusion

We proposed a Fokker-Planck model suitable for dense gas.

Dense gas effects were captured by introducing a spatial drift term.

Several examples showed the accuracy of model in capturing total
pressure, shear stress and heat fluxes.
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Outlooks

Hard Sphere (what we assumed here according to Enskog operator) is
not so accurate representation of force field in very dense gases or
liquids. A collision operator based on more realistic molecular
potentials, such as Lennard-Jones potential, is needed.

More accurate time integration scheme can let us increase time step.

Idea of extra streaming might provide a framework for modeling
incompressible constraint with Fokker-Planck.
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Thanks for your attention.
Any questions?
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Measurement of gradient

〈Q〉 =

∑Nc
j=1 Qj

Nc
. (8.1)

∂Qi

∂xj
≈

∫
∂Qi
∂xj

dV∫
dV

=

∮
QinjdA

∆V
. (8.2)

〈Qi 〉f =

∑Nc
j=1 Q j

i δt j∑Nc
j=1 δt j

=

∑Nc
j=1 Q j

i
δxi
M j

i∑Nc
j=1

δxi
M j

i

. (8.3)
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