Stochastic Particle Approach for Non-Continuum Multiphase Flows: A Study on Inverted Temperature Gradient

Mohsen Sadr¹, Hossein Gorji² & Manuel Torrilhon¹

 1 MathCCES, RWTH Aachen University, Germany 2 MCSS, Ecole Polytechnique Fédéral de Lausanne, Switzerland

Rio de Janeiro, May 20, 2019

Motivation

Goal?

Accurate & efficient predictions of multiphase flows at large scales.

Motivation

Goal?

Accurate & efficient predictions of multiphase flows at large scales.

Methods	Non-equilibrium physics	No closure problem	No inter-phase problem	Large scale simulation	No noise
Continuum Mechanics	×	Х	×	/	1
Molecular Dynamics	/	/	✓	X , cost= $\mathcal{O}(N_{\text{Mol}}^2)$	×
Kinetic theory	✓	1	✓	\checkmark , cost= $O(N_{\text{Particle}}^2)$ $O(N_{\text{Particle}})$	×

Applications?

- Fuel droplets [1].
- Molecular distillation. [2, 3, 4]
- Evaporation processes in the laser solid interaction [5].
- Sonoluminescence [6].

Dilute .vs. Dense Fluids

Dilute

Point particle: **Boltzmann** collision operator

Dilute .vs. Dense Fluids

Dilute

Point particle: **Boltzmann** collision operator

Dense

Particles with Sutherland potential:

Enskog collision operator

+ attraction.

Enskog-Vlasov equation

Evolution of velocity distribution function $\mathcal{F}(\boldsymbol{V},\boldsymbol{x},t)$ is described via

where $\xi_i = \partial U/\partial x_i$ indicates inter-molecular attractive force and

$$U(\mathbf{x}) = \frac{1}{m} \int_{r:=|\mathbf{x}'-\mathbf{x}|>\sigma} \phi(r) n(\mathbf{x}') d^3 \mathbf{x}'$$
 (1.2)

with

$$\phi(r) = \epsilon \left(\frac{\sigma}{r}\right)^6 \tag{1.3}$$

Enskog-Vlasov equation

$$\frac{\partial \mathcal{F}}{\partial t} + \frac{\partial (\mathcal{F}V_j)}{\partial x_j} - \underbrace{\xi_j \frac{\partial \mathcal{F}}{\partial V_j}}_{\text{Attraction}} = \underbrace{S^{\text{Ensk}}(\mathcal{F})}_{\text{Repulsion}}$$
(1.1 revisited)

and collision operator accounts for repulsion, i.e.

$$S^{\mathsf{Ensk}} = \int_{\mathbb{R}^3} \int_0^{2\pi} \int_0^{+\infty} \left[Y(\boldsymbol{x} + \frac{1}{2}\sigma\hat{\boldsymbol{k}}) \mathcal{F}(\boldsymbol{V}^*, \boldsymbol{x}) \mathcal{F}(\boldsymbol{V}_1^*, \boldsymbol{x} + \sigma\hat{\boldsymbol{k}}) - Y(\boldsymbol{x} - \frac{1}{2}\sigma\hat{\boldsymbol{k}}) \mathcal{F}(\boldsymbol{V}, \boldsymbol{x}) \mathcal{F}(\boldsymbol{V}_1, \boldsymbol{x} - \sigma\hat{\boldsymbol{k}}) \right] g \hat{b} d\hat{b} d\hat{\epsilon} d^3 \boldsymbol{V}_1.$$
(1.4)

- \hat{b} , $\hat{\epsilon}$ and \hat{k} specify collision cross section.
- σ : effective diameter of particles.
- Y: pair correlation function.
- * : post-collision state.

Step 1: Enskog equation

$$\frac{\partial \mathcal{F}}{\partial t} + \frac{\partial (\mathcal{F}V_j)}{\partial x_j} - \underbrace{\xi_j \frac{\partial \mathcal{F}}{\partial V_j}}_{\text{Attraction}} = \underbrace{S^{\text{Ensk}}(\mathcal{F})}_{\text{Repulsion}}$$
(1.5)

Approaches:

- Directly discretize \mathcal{F} in $(\mathbf{x}, \mathbf{v}, t) \rightarrow$ high dimensionality!
- ullet Solve for the moments o fast but needs further assumptions for $\mathcal{F}!$
- ullet Evolve the samples of ${\mathcal F} o$ efficient/accurate with stochastic noise ${\checkmark}$

Step 1: Enskog equation

$$\frac{\partial \mathcal{F}}{\partial t} + \frac{\partial (\mathcal{F}V_j)}{\partial x_j} - \underbrace{\xi_j \frac{\partial \mathcal{F}}{\partial V_j}}_{\text{Attraction}} = \underbrace{S^{\text{Ensk}}(\mathcal{F})}_{\text{Repulsion}}$$
(1.5)

Approaches:

- Directly discretize \mathcal{F} in $(\mathbf{x}, \mathbf{v}, t) \rightarrow$ high dimensionality!
- ullet Solve for the moments o fast but needs further assumptions for $\mathcal{F}!$
- ullet Evolve the samples of ${\mathcal F} o$ efficient/accurate with stochastic noise \checkmark
 - Resolving underlying jump process \rightarrow exact but cost is of $\mathcal{O}(n^2)!$
 - $\bullet \ \ \mathsf{Modeling} \ \mathsf{with} \ \mathsf{continuous} \ \mathsf{process} \to \mathsf{reasonably} \ \mathsf{accurate/efficient} \ \checkmark$

This motivates developing Fokker-Planck model for phase transition.

Review: Fokker-Planck model

Consider an Itô process

$$\begin{cases}
d\mathbf{M} = \mathbf{A}dt + Dd\mathbf{W} \text{ and} \\
d\mathbf{X} = \mathbf{M}dt
\end{cases}$$
(1.6)

where \boldsymbol{W} is a Wiener process. Itô calculus provides us the equivalent Fokker-Planck equation¹

$$\frac{\partial \mathcal{F}}{\partial t} + \frac{\partial (\mathcal{F}V_i)}{\partial x_i} = -\frac{\partial (\mathcal{F}A_i)}{\partial V_i} + \frac{1}{2} \frac{\partial^2}{\partial V_j \partial V_j} (D^2 \mathcal{F}). \tag{1.7}$$

Drift and diffusion

 $m{A}$ and D are called drift and diffusion coefficients, respectively, and are set to give an approximation of a generic collision operator.

¹ see Gardiner (1996) [7].

Homogeneous relaxation rates of Enskog equation

Re-writing Enskog operator

$$S^{\mathsf{Ensk}} = Y(\mathbf{x})S^{\mathsf{Boltz}} + S_{\phi} \tag{1.8}$$

where S_{ϕ} includes all spatial dependency of \mathcal{F} and Y in x.

Relaxation rates of shear stress and heat fluxes then become

$$\frac{\partial \pi_{ij}}{\partial t} = -Y \frac{p}{\mu^{\text{kin}}} \pi_{ij} \tag{1.9}$$

and
$$\frac{\partial q_i}{\partial t} = -Y \frac{2}{3} \frac{p}{\mu^{\text{kin}}} q_i$$
. (1.10)

• **A** and **D** can be approximated by a cubic FP model similar to treatment of Boltzmann operator².

²see Gorji *et al.* (2011) [8].

Taking velocity moment $\psi \in \{1, V_j, V_j V_j / 2\}$ of expanded Enskog equation leads to

$$\int_{\mathbb{R}^3} \psi \left(\frac{\partial \mathcal{F}}{\partial t} + V_i \frac{\partial \mathcal{F}}{\partial x_i} \right) d^3 \mathbf{V} = -\frac{\partial \Psi_i^{\phi}}{\partial x_i}. \tag{1.11}$$

where Ψ^ϕ is called collsional transfer. Ignoring higher order terms lead to

$$p^{\text{tot}} = (1 + nbY)nkT - w\frac{\partial U_k}{\partial x_k}, \qquad (1.12)$$

$$\pi_{ij}^{\text{tot}} = (1 + 2nbY/5)\pi_{ij} - (5w/6)\frac{\partial U_{\langle i}}{\partial x_{i\rangle}}$$
 (1.13)

and

$$q_i^{\text{tot}} = (1 + 3nbY/5)q_i - c_v w \frac{\partial T}{\partial x_i}$$
 (1.14)

where $w = (nb)^2 Y \sqrt{mkT}/(\pi^{3/2}\sigma^2)$ is bulk viscosity. Extra streaming in FP should account for dense effects.

Dense gas Fokker-Planck model (DFP)

• Collisional transfer promotes idea of extra streaming

$$\frac{\partial \mathcal{F}}{\partial t} + \frac{\partial (\mathcal{F}V_i)}{\partial x_i} = -\frac{\partial (\mathcal{F}A_i)}{\partial V_i} + \frac{1}{2} \frac{\partial^2 (D^2 \mathcal{F})}{\partial V_j \partial V_j} - \frac{\partial (\mathcal{F}\hat{A}_i)}{\partial x_i} . \tag{1.15}$$

- What is Â?
 Â is a spatial drift set to guarantee dense effects in the transport.
- A cubic model for \hat{A} was designed [9], i.e.

$$\hat{A}_i = \hat{c}_{ij}v'_j + \hat{\gamma}_i\left(v'_jv'_j - \frac{3kT}{m}\right) + \hat{\Lambda}\left(v'_iv'_jv'_j - \frac{2q_i}{\rho}\right). \quad (1.16)$$

Accuracy and efficiency of DFP: equilibrium pressure³

Figure 1: Equilibrium test case.

 $^{^3}$ see Sadr and Gorji (2017) [9]

Lid-driven cavity 4

Figure 2: Temperature contours and heat fluxes of the lid-driven cavity flow at ${\rm Kn}=0.1,\ nb=0.1$ and $U_w=300\ {\rm m/s}.$

⁴see Sadr and Gorji (2017) [9]

Step 2: Modelling long-range interaction

$$\frac{\partial \mathcal{F}}{\partial t} + \frac{\partial (\mathcal{F}V_j)}{\partial x_j} - \underbrace{\xi_j \frac{\partial \mathcal{F}}{\partial V_j}}_{\text{Attraction}} = \underbrace{\mathcal{S}^{\mathsf{Ensk}}(\mathcal{F})}_{\text{Repulsion}}$$
(1.1 revisited)

where $\xi_i = \partial U/\partial x_i$ and

$$U(\mathbf{x}) = \frac{1}{m} \int_{r:=|\mathbf{x}'-\mathbf{x}|>\sigma} \phi(r) n(\mathbf{x}') d^3 \mathbf{x}'$$
 (1.2 revisited)

Approaches:

- \bullet Integrating with particles \to acceptable resolution requires too many particles!
- ullet Using quadrature rule o mesh refinement and cut-off are required!
- ullet Convolution and density expansion o only includes local variation and higher order derivatives of density needs to be ignored!
- How about transforming the Vlasov integral to the solution of an elliptic PDE? ✓

Screened-Poisson equation (SP), unbounded domain

Idea: Relating Vlasov integral

$$U(\mathbf{x}) = \int_{r>\sigma} \phi(r) n(\mathbf{x}') d^3 \mathbf{x}'$$
 (1.17)

to a Poisson-type PDE.

• Approximate ϕ by $\tilde{\phi}$ via minimizing $|\phi(r) - \tilde{\phi}(r)|$ for $r \in (\sigma, \infty)$

$$\phi(r) = \epsilon \left(\frac{\sigma}{r}\right)^{6}$$

$$\approx a \frac{e^{-\lambda r}}{4\pi r} = \underbrace{aG(r)}_{\tilde{\phi}(r)}$$
(1.18)

• G(r) for r > 0 is the fundamental solution of the screened-Poisson PDE, i.e.

$$(\nabla^2 - \lambda^2) u(\mathbf{x}) = -n(\mathbf{x}), \quad \forall \mathbf{x} \in \mathbb{R}^3.$$
 (1.19)

Screened-Poisson equation (SP), unbounded domain

Rewrite the Vlasov integral as:

$$U(\mathbf{x}) = \underbrace{\int_{r>0} \phi(r) n(\mathbf{x}') d^3 \mathbf{x}'}_{U_{r>0}} - \underbrace{\int_{r<\sigma} \phi(r) n(\mathbf{x}') d^3 \mathbf{x}'}_{U_{r<\sigma}}.$$
 (1.20)

- $U_{r<\sigma}$ can be solved analytically assuming density doesn't vary much within $r\in(0,\sigma)\to$ modelling decision.
- $U_{r>0}$ is the solution of unbounded screened-Poisson PDE, i.e.

$$(\nabla^2 - \lambda^2) u(\mathbf{x}) = -n(\mathbf{x}), \quad \forall \mathbf{x} \in \mathbb{R}^3.$$
 (1.21)

Challenge: we cannot solve the PDE numerically in \mathbb{R}^3 .

SP on bounded domains

What we want is the solution of unbounded screened-Poisson

$$(\nabla^2 - \lambda^2) u(\mathbf{x}, t) = n(\mathbf{x}, t) \qquad (\forall \mathbf{x} \in \mathbb{R}^3), \tag{1.22}$$

only in some $\Omega \subset \mathbb{R}^3$. Consider the PDE

$$(\nabla^2 - \lambda^2) \psi(\mathbf{x}, t) = n(\mathbf{x}, t) \quad (\forall \mathbf{x} \in \Omega) \text{ and } (1.23)$$

$$\psi(\mathbf{y},t) = g(\mathbf{y},t) \quad (\forall \mathbf{y} \in \partial\Omega).$$
 (1.24)

Uniqueness of screened-Poisson equation with Dirichlet BC implies

$$\psi(\mathbf{x},t) = u(\mathbf{x},t) \quad (\forall \mathbf{x} \in \Omega)$$
 (1.25)

provided

$$g(\mathbf{y},t) = u(\mathbf{y},t) \qquad (\forall \mathbf{y} \in \partial\Omega).$$
 (1.26)

Note $u(\mathbf{y}, t)$ on $\partial \Omega$ can be calculated directly.

Evaporation

Evaporation/Condensation rate (DFP-SP)

Figure 4: Normalized number density and reflective evaporation/condensation rate profiles for droplets of Argon in a box with periodic boundary condition bathed with 80 and $100~\mathrm{K}$ thermostats compared with MD simulation⁵.

 $^{^{\}mbox{5}}$ for the MD simulation, please see Yasuoka $\emph{el al.}$ (1994). [10]

Inverted Temperature Gradients using DFP-SP

Inverted Temperature Gradients using DFP-SP

Figure 5: Normalized profiles of temperature and number density of two droplets and the vapour between obtained via DFP-SP model where $T_{\rm hot}=95~{\rm K}$ while $T_{\rm cold}=80,~85$ and $90~{\rm K}.$

Conclusion

- Via collision and Vlasov integral, non-equilibrium phase transition process can be described by Enskog-Vlasov equation.
- Furthermore, efficient solution algorithm can be achieved by modeling collisions through continuous stochastic process⁶ and Vlasov integral by screened-Poisson equation⁷ (DFP-SP).
- Several test cases showed a good agreement with benchmark at lower computational cost.
- Below critical point, the phenomenon of inverted temperature gradient using DFP-SP was studied here.

see M Sadr & MH Gorji, Phys. Fluids, Vol. 29, (2017).

see M Sadr & MH Gorji, J. Comput. Phys., Vol. 378, (2019).

Thanks for your attention.

Any questions?

For Further Reading I

- S. S. Sazhin, "Modelling of fuel droplet heating and evaporation: Recent results and unsolved problems," *Fuel*, vol. 196, pp. 69–101, 2017.
 - J. Lutišan and J. Cvengroš, "Mean free path of molecules on molecular distillation," *The Chemical Engineering Journal and the Biochemical Engineering Journal*, vol. 56, no. 2, pp. 39–50, 1995.
- S. Wang, Y. Gu, Q. Liu, Y. Yao, Z. Guo, Z. Luo, and K. Cen, "Separation of bio-oil by molecular distillation," *Fuel Processing Technology*, vol. 90, no. 5, pp. 738–745, 2009.
- Y. Li and S.-L. Xu, "DSMC simulation of vapor flow in molecular distillation," *Vacuum*, vol. 110, pp. 40–46, 2014.
- C. J. Knight, "Theoretical modeling of rapid surface vaporization with back pressure," *AIAA journal*, vol. 17, no. 5, pp. 519–523, 1979.

For Further Reading II

- M. P. Brenner, S. Hilgenfeldt, and D. Lohse, "Single-bubble sonoluminescence," *Reviews of Modern Physics*, vol. 74, no. 2, p. 425, 2002.
 - C. W. Gardiner, Handbook of stochastic methods: For Physics, Chemistry and the Natural Sciences, vol. 13.

 Springer Series in Synergetics, 1996.
- M. H. Gorji, M. Torrilhon, and P. Jenny, "Fokker–Planck model for computational studies of monatomic rarefied gas flows," *Journal of Fluid Mechanics*, vol. 680, pp. 574–601, 2011.
- M. Sadr and M. H. Gorji, "A continuous stochastic model for non-equilibrium dense gases," *Physics of Fluids*, vol. 29, no. 12, p. 122007, 2017.

For Further Reading III

From statistical mechanics, the virial expansion of pressure can be obtained by

$$Z := \frac{p}{nkT} = 1 + B_2 n + B_3 n^2 + B_4 n^2 ..., \tag{3.1}$$

$$B_{N} = \frac{1 - N}{N!} \lim_{V \to 0} V^{-1} \int ... \int d\mathbf{r}_{1} ... d\mathbf{r}_{N} V_{N}, \qquad (3.2)$$

$$V_N = \sum_{i < j} \prod_{i < j}^N f_{ij} \tag{3.3}$$

and
$$f_{ij} = exp(-\phi_{ij}/kT) - 1,$$
 (3.4)

where ϕ_{ij} is molecular potential between particles i and j.

The factor Y (which comes form virial expansion)

$$Y := \frac{Z - 1}{nb} \tag{3.5}$$

for hard-sphere can be calculated exactly as done by Ree-Hoover [?]

$$Y = 1 + 0.625nb + 0.2869(nb)^{2} + 0.115(nb)^{3} + \dots$$
 (3.6)

or approximated by a closed expression as suggested by Carnahan-Starling [11]

$$Y^{CS} = \frac{1 - nb/8}{(1 - nb/4)^3}. (3.7)$$