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Motivation

Goal?
Accurate & efficient predictions of multiphase flows at large scales.

Methods Non-equilibrium physics No closure problem No inter-phase problem Large scale simulation No noise
Continuum Mechanics 7 7 7 3 3

Molecular Dynamics 3 3 3 7, cost=O(N2
Mol.) 7

Kinetic theory 3 3 3 3, cost=O(N2
Particle)

O(NParticle)
7

Kinetic Theory Continuum MechanicsMolecular Dynamics

Length Scale

Cost

Applications?

Fuel droplets [1].
Molecular distillation. [2, 3, 4]
Evaporation processes in the laser solid interaction [5].
Sonoluminescence [6].
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Dilute .vs. Dense Fluids

Dilute

Point particle:
Boltzmann collision operator

Dense

Particles with Sutherland potential:
Enskog collision operator

+ attraction.
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Enskog-Vlasov equation

Evolution of velocity distribution function F(V , x , t) is described via
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= SEnsk(F)︸ ︷︷ ︸
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(1.1)

where ξi = ∂U/∂xi indicates inter-molecular attractive force and

U(x) =
1

m

∫
r :=|x ′−x |>σ

φ(r)n(x ′)d3x ′ (1.2)

with

φ(r) = ε
(σ
r

)6
(1.3)
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Enskog-Vlasov equation

∂F
∂t

+
∂(FVj)

∂xj
− ξj

∂F
∂Vj︸ ︷︷ ︸

Attraction

= SEnsk(F)︸ ︷︷ ︸
Repulsion

(1.1 revisited)

and collision operator accounts for repulsion, i.e.

SEnsk =

∫
R3

∫ 2π

0

∫ +∞

0

[
Y (x +

1

2
σk̂)F(V ∗, x)F(V ∗1 , x + σk̂)

− Y (x − 1

2
σk̂)F(V , x)F(V1, x − σk̂)

]
gb̂db̂d ε̂d3V1. (1.4)

b̂, ε̂ and k̂ specify collision cross
section.

σ: effective diameter of particles.

Y : pair correlation function.
∗ : post-collision state.

Mohsen Sadr MathCCES, RWTH Aachen University Rio de Janeiro, May 20, 2019 4 / 19



Step 1: Enskog equation

∂F
∂t

+
∂(FVj)

∂xj
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���

0

− ξj
∂F
∂Vj︸ ︷︷ ︸

Attraction

= SEnsk(F)︸ ︷︷ ︸
Repulsion

(1.5)

Approaches:

Directly discretize F in (x , v , t) → high dimensionality!

Solve for the moments → fast but needs further assumptions for F !

Evolve the samples of F → efficient/accurate with stochastic noise X

Resolving underlying jump process → exact but cost is of O(n2)!
Modeling with continuous process → reasonably accurate/efficient X

This motivates developing Fokker-Planck model for phase transition.
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Review: Fokker-Planck model

Consider an Itô process{
dM = Adt + DdW and
dX = Mdt ,

(1.6)

where W is a Wiener process. Itô calculus provides us the equivalent
Fokker-Planck equation1

∂F
∂t

+
∂(FVi )

∂xi
= −∂(FAi )

∂Vi
+

1

2

∂2

∂Vj∂Vj
(D2F). (1.7)

Drift and diffusion

A and D are called drift and diffusion coefficients, respectively, and are set
to give an approximation of a generic collision operator.

1
see Gardiner (1996) [7].
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Homogeneous relaxation rates of Enskog equation

Re-writing Enskog operator

SEnsk = Y (x)SBoltz + Sφ (1.8)

where Sφ includes all spatial dependency of F and Y in x .

Relaxation rates of shear stress and heat fluxes then become

∂πij
∂t

= −Y p

µkin
πij (1.9)

and
∂qi
∂t

= −Y 2

3

p

µkin
qi . (1.10)

A and D can be approximated by a cubic FP model similar to
treatment of Boltzmann operator2.

2
see Gorji et al. (2011) [8].
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Taking velocity moment ψ ∈ {1,Vj ,VjVj/2} of expanded Enskog equation
leads to ∫

R3

ψ
(∂F
∂t

+ Vi
∂F
∂xi

)
d3V = −

∂Ψφ
i

∂xi
. (1.11)

where Ψφ is called collsional transfer. Ignoring higher order terms lead to

ptot = (1 + nbY )nkT − w
∂Uk

∂xk
, (1.12)

πtot
ij = (1 + 2nbY /5)πij − (5w/6)

∂U〈i
∂xj〉

(1.13)

and

qtot
i = (1 + 3nbY /5)qi − cvw

∂T

∂xi
(1.14)

where w = (nb)2Y
√
mkT/(π3/2σ2) is bulk viscosity.

Extra streaming in FP should account for dense effects.
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Dense gas Fokker-Planck model (DFP)

Collisional transfer promotes idea of extra streaming

∂F
∂t

+
∂(FVi )

∂xi
= −∂(FAi )

∂Vi
+

1

2

∂2(D2F)

∂Vj∂Vj
−∂(FÂi )

∂xi
. (1.15)

What is Â?
Â is a spatial drift set to guarantee dense effects in the transport.

A cubic model for Â was designed [9], i.e.

Âi = ĉijv
′
j + γ̂i

(
v ′j v
′
j −

3kT

m

)
+ Λ̂

(
v ′i v
′
j v
′
j −

2qi
ρ

)
. (1.16)
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Accuracy and efficiency of DFP: equilibrium pressure3
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Figure 1: Equilibrium test case.

3
see Sadr and Gorji (2017) [9]
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Lid-driven cavity 4

(a) DFP (b) ESMC

Figure 2: Temperature contours and heat fluxes of the lid-driven cavity flow at
Kn = 0.1, nb = 0.1 and Uw = 300 m/s.

4
see Sadr and Gorji (2017) [9]
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Step 2: Modelling long-range interaction

∂F
∂t

+
∂(FVj)

∂xj
− ξj

∂F
∂Vj︸ ︷︷ ︸

Attraction

= SEnsk(F)︸ ︷︷ ︸
Repulsion

(1.1 revisited)

where ξi = ∂U/∂xi and

U(x) =
1

m

∫
r :=|x ′−x |>σ

φ(r)n(x ′)d3x ′ (1.2 revisited)

Approaches:

Integrating with particles → acceptable resolution requires too many
particles!

Using quadrature rule → mesh refinement and cut-off are required!

Convolution and density expansion → only includes local variation
and higher order derivatives of density needs to be ignored!

How about transforming the Vlasov integral to the solution of an
elliptic PDE? X
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Screened-Poisson equation (SP), unbounded domain

Idea: Relating Vlasov integral

U(x) =

∫
r>σ

φ(r)n(x ′)d3x ′ (1.17)

to a Poisson-type PDE.

Approximate φ by φ̃ via minimizing |φ(r)− φ̃(r)| for r ∈ (σ,∞)
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)6

≈ a
e−λr

4πr
= aG (r)︸ ︷︷ ︸

φ̃(r)

(1.18)

G (r) for r > 0 is the fundamental solution of the screened-Poisson
PDE, i.e. (

∇2 − λ2
)
u(x) = −n(x), ∀x ∈ R3. (1.19)
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Screened-Poisson equation (SP), unbounded domain

Rewrite the Vlasov integral as:

U(x) =

∫
r>0

φ(r)n(x ′)d3x ′︸ ︷︷ ︸
Ur>0

−
∫
r<σ

φ(r)n(x ′)d3x ′︸ ︷︷ ︸
Ur<σ

. (1.20)

Ur<σ can be solved analytically assuming density doesn’t vary much
within r ∈ (0, σ) → modelling decision.

Ur>0 is the solution of unbounded screened-Poisson PDE, i.e.(
∇2 − λ2

)
u(x) = −n(x), ∀x ∈ R3. (1.21)

Challenge: we cannot solve the PDE numerically in R3.
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SP on bounded domains

What we want is the solution of unbounded screened-Poisson

(∇2 − λ2)u(x , t) = n(x , t) (∀x ∈ R3), (1.22)

only in some Ω ⊂ R3. Consider the PDE(
∇2 − λ2

)
ψ(x , t) = n(x , t) (∀x ∈ Ω) and (1.23)

ψ(y , t) = g(y , t) (∀y ∈ ∂Ω). (1.24)

Uniqueness of screened-Poisson equation with Dirichlet BC implies

ψ(x , t) = u(x , t) (∀x ∈ Ω) (1.25)

provided

g(y , t) = u(y , t) (∀y ∈ ∂Ω). (1.26)

Note u(y , t) on ∂Ω can be calculated directly.
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Evaporation
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Figure 3: Evaporation test case
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Evaporation/Condensation rate (DFP-SP)
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Figure 4: Normalized number density and reflective evaporation/condensation
rate profiles for droplets of Argon in a box with periodic boundary condition
bathed with 80 and 100 K thermostats compared with MD simulation5.

5
for the MD simulation, please see Yasuoka el al. (1994). [10]
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Inverted Temperature Gradients using DFP-SP

Mohsen Sadr MathCCES, RWTH Aachen University Rio de Janeiro, May 20, 2019 17 / 19



Inverted Temperature Gradients using DFP-SP
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Figure 5: Normalized profiles of temperature and number density of two droplets
and the vapour between obtained via DFP-SP model where Thot = 95 K while
Tcold = 80, 85 and 90 K.
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Conclusion

Via collision and Vlasov integral, non-equilibrium phase transition
process can be described by Enskog-Vlasov equation.

Furthermore, efficient solution algorithm can be achieved by modeling
collisions through continuous stochastic process6 and Vlasov integral
by screened-Poisson equation7 (DFP-SP).

Several test cases showed a good agreement with benchmark at lower
computational cost.

Below critical point, the phenomenon of inverted temperature
gradient using DFP-SP was studied here.

6
see M Sadr & MH Gorji, Phys. Fluids, Vol. 29, (2017).

7
see M Sadr & MH Gorji, J. Comput. Phys., Vol. 378, (2019).
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Thanks for your attention.
Any questions?
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From statistical mechanics, the virial expansion of pressure can be
obtained by

Z :=
p

nkT
= 1 + B2n + B3n

2 + B4n
2..., (3.1)

BN =
1− N

N!
lim
V→0

V−1

∫
...

∫
dr1...drNVN , (3.2)

VN =
∑ N∏

i<j

fij (3.3)

and fij = exp(−φij/kT )− 1, (3.4)

where φij is molecular potential between particles i and j .
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The factor Y (which comes form virial expansion)

Y :=
Z − 1

nb
(3.5)

for hard-sphere can be calculated exactly as done by Ree-Hoover [?]

Y = 1 + 0.625nb + 0.2869(nb)2 + 0.115(nb)3 + ... (3.6)

or approximated by a closed expression as suggested by Carnahan-Starling
[11]

Y CS =
1− nb/8

(1− nb/4)3
. (3.7)
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