Collisional Multi-Marginal Optimal Transport for Generative Al

Mohsen Sadr! and M. Hossein Goriji?

H
IIIII 1Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA

2Laboratory for Computational Engineering, Empa, Dubendorf, Switzerland

Massachusetts
Institute of
Technology

MMOT Problem

Let P(X;) be the space of non-negative Borel measures over X; C R", and

Pt = {ue )| [ Nl <oo (1)

with [|.||» the L*-Euclidean norm. Consider K probability measures p; € Po(X;) with
e {l,..., K}

We are interested in the Multi-Marginal Optimal Transport problem (MMOT),
which seeks the minimization

Topt *= argmin /C(Zbl,...,ZCK)TF(dZC), (2)
well(py,..., i) J X

where X' is the product set X (= A} X ... X Ax.

The MMOT optimization is constrained on 1I, i,e., the set of coupling mea-
sures

(0, s ) = {w & Po(X) |proj,(m) = 13 Vi € {1, ..., K}} (3)

and proj, : X — Aj is the canonical projection. For simplicity, here we consider

K K 1
C($1, ...,mK) — >4 >4 §H$Z — Q?QHS (4)
1=1 g=1+1

as the cost function.

Main ldea

Swapping Algorithm.
For each marginal « € {1, ..., K} and samples j, k € {1, ..., N,} with k > j, Iterated
Swapping Algorithm (ISA) updates the samples via

(x(  x

1 Nkt

)" = Kyl X" (5)
The swaps are guided by the discrete cost
m(my) = Bz |c (6)

where 7; is the empirical measure of X;. The swapping kernel is given by

i), 50
o B if m(7 T > m(#)

ik = XU x ) (7)
Jonson If m(m,’ ) < m(7)

with I, as the identity matrix and J an exchange matrix of the form

Onxn [nxn
Jonxon = 70 (8)

nxn n><n_

and 0,,«,, iIs @ n X n matrix with zero entries.

Collision-based OT.

We propose a collision process that evolves an initial joint measure of {1, (o} in a
fashion similar to binary collisions, where collisions refer to swapping the state of two
particles.

Let p; be the time dependent density of the joint measure. An equivalent
collision operator of the Boltzmann-type can be described as

Qlpt, pi] = /R% pe(x1, y)pe(x, y1) A, 21, y, yi )drdyy — oz, y)pi(x,y),  (9)

a(z,y) = /R2 pr(zr, Y1)z, 21, ¥, y1)dxdys (10)

and the collision kernel reads
Q(ZC, L1, Y, yl) — H<C<x7 y) + C(Zvla yl) o C(xla y) o C(ZC, yl)) (11)

where H(.) is the Heaviside function.

Heuristically, the kinetic model (9) describes a process where binary collisions
are only accepted if the cost c is decreased by the swaps between the two randomly
picked sample points.
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Exponential Convergence

Let us consider the Cauchy problem

dp _ A
o = Plo.pl —ap (12)

where P|p, p| is a bilinear operator, and & # 0 is a constant. The solution to the
Cauchy problem can be written as

0

p=e"> (1—e ) p (13)

k=0

where py. is given by the recurrence formula

1
EP[Ph, Pk—n)- (14)

By defining Plp, p| :== Q|p, p| + &p, formally we have limy_ o pr = lim;_,o p = p,
where p* is the equilibrium solution to the Boltzmann equation, i.e. the target sub-
optimal joint density in this context. For a given € and t > ¢, there exists finite ny

and K where the Wild expansion is bounded F©"")(z) < K such that

L2 & )
p— p*| < Knge % + gee_o‘t > (1—e it (15)

n=1

Randomized Swapping Algorithm

Input: X = [XW, ... X5 and tolerance ¢
repeat
for:=1,..., K do
Generate an even random list of particle indices R.
Decompose R into same-size subsets / and J where I N J = & and
1] = || = [N,/2).
fork=1,...,|[N,/2| do

500 x0)
if m(#, %) < m(#,) then

X)) e X and X+ X}
end if
end for
end for

until Convergence in
Output: X
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