# Collisional Multi-Marginal Optimal Transport for Generative Al

Mohsen Sadr<sup>1</sup> and M. Hossein Gorji<sup>2</sup>



<sup>1</sup>Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA <sup>2</sup>Laboratory for Computational Engineering, Empa, Dübendorf, Switzerland



#### MMOT Problem

Let  $\mathcal{P}(\mathcal{X}_i)$  be the space of non-negative Borel measures over  $\mathcal{X}_i \subset \mathbb{R}^n$ , and

$$\mathcal{P}_2(\mathcal{X}_i) := \left\{ \mu \in \mathcal{P}(\mathcal{X}_i) \middle| \int_{\mathcal{X}_i} ||x||_2^2 \mu(dx) < \infty \right\} \tag{1}$$

with  $||.||_2$  the  $L^2$ -Euclidean norm. Consider K probability measures  $\mu_i \in \mathcal{P}_2(\mathcal{X}_i)$  with  $i \in \{1, ..., K\}.$ 

We are interested in the Multi-Marginal Optimal Transport problem (MMOT), which seeks the minimization

$$\pi_{\text{opt}} := \underset{\pi \in \Pi(\mu_1, \dots, \mu_K)}{\arg \min} \int_{\mathcal{X}} c(x_1, \dots, x_K) \pi(dx) , \qquad (2)$$

where  $\mathcal{X}$  is the product set  $\mathcal{X} := \mathcal{X}_1 \times ... \times \mathcal{X}_K$ .

The MMOT optimization is constrained on  $\Pi$ , i,e., the set of coupling measures

$$\Pi(\mu_1, ..., \mu_K) := \left\{ \pi \in \mathcal{P}_2(\mathcal{X}) \middle| \operatorname{proj}_i(\pi) = \mu_i \ \forall i \in \{1, ..., K\} \right\}$$
 (3)

and  $\text{proj}_i: \mathcal{X} \to \mathcal{X}_i$  is the canonical projection. For simplicity, here we consider

$$c(x_1, ..., x_K) = \sum_{i=1}^K \sum_{j=i+1}^K \frac{1}{2} ||x_i - x_j||_2^2$$
(4)

as the cost function.

#### Main Idea

#### Swapping Algorithm.

For each marginal  $i \in \{1,...,K\}$  and samples  $j,k \in \{1,...,N_p\}$  with  $k \geq j$ , Iterated Swapping Algorithm (ISA) updates the samples via

$$(X_{j,t+1}^{(i)}, X_{k,t+1}^{(i)})^T = \mathcal{K}_{j,k}(X_{j,t}^{(i)}, X_{k,t}^{(i)})^T.$$
(5)

The swaps are guided by the discrete cost

$$m(\tilde{\pi}_t) = \mathbb{E}_{\tilde{\pi}_t}[c] \tag{6}$$

where  $\tilde{\pi}_t$  is the empirical measure of  $X_t$ . The swapping kernel is given by

$$\mathcal{K}_{j,k} = \begin{cases} I_{2n \times 2n} & \text{if } m(\tilde{\pi}_t^{X_j^{(i)} \leftrightarrow X_k^{(i)}}) \ge m(\tilde{\pi}_t) \\ J_{2n \times 2n} & \text{if } m(\tilde{\pi}_t^{X_j^{(i)} \leftrightarrow X_k^{(i)}}) < m(\tilde{\pi}_t) \end{cases}$$

$$(7)$$

with  $I_{n\times n}$  as the identity matrix and J an exchange matrix of the form

$$J_{2n\times 2n} = \begin{bmatrix} 0_{n\times n} & I_{n\times n} \\ I_{n\times n} & 0_{n\times n} \end{bmatrix} \tag{8}$$

and  $0_{n \times n}$  is a  $n \times n$  matrix with zero entries.

#### Collision-based OT.

We propose a collision process that evolves an initial joint measure of  $\{\mu_1,\mu_2\}$  in a fashion similar to binary collisions, where collisions refer to swapping the state of two particles.

Let  $\rho_t$  be the time dependent density of the joint measure. An equivalent collision operator of the Boltzmann-type can be described as

$$Q[\rho_{t}, \rho_{t}] = \int_{\mathbb{R}^{2n}} \rho_{t}(x_{1}, y) \rho_{t}(x, y_{1}) \Omega(x, x_{1}, y, y_{1}) dx_{1} dy_{1} - \alpha(x, y) \rho_{t}(x, y), \quad (9)$$

$$\alpha(x, y) = \int_{\mathbb{R}^{2n}} \rho_{t}(x_{1}, y_{1}) \Omega(x, x_{1}, y, y_{1}) dx_{1} dy_{1} \quad (10)$$

and the collision kernel reads

$$\Omega(x, x_1, y, y_1) = H\left(c(x, y) + c(x_1, y_1) - c(x_1, y) - c(x, y_1)\right)$$
(11)

where H(.) is the Heaviside function.

Heuristically, the kinetic model (9) describes a process where binary collisions are only accepted if the cost c is decreased by the swaps between the two randomly picked sample points.

# **Exponential Convergence**

Let us consider the Cauchy problem

$$\frac{\partial \rho}{\partial t} = P[\rho, \rho] - \hat{\alpha}\rho \tag{12}$$

where  $P[\rho,\rho]$  is a bilinear operator, and  $\hat{\alpha}\neq 0$  is a constant. The solution to the Cauchy problem can be written as

$$\rho = e^{-\hat{\alpha}t} \sum_{k=0}^{\infty} (1 - e^{-\hat{\alpha}t})^k \rho_k \tag{13}$$

where  $\rho_k$  is given by the recurrence formula

$$\rho_k = \frac{1}{k+1} \sum_{h=0}^{k} \frac{1}{\hat{\alpha}} P[\rho_h, \rho_{k-h}]. \tag{14}$$

By defining  $P[\rho,\rho]:=Q[\rho,\rho]+\hat{\alpha}\rho$ , formally we have  $\lim_{k\to\infty}\rho_k=\lim_{t\to\infty}\rho=\rho^*$ , where  $\rho^*$  is the equilibrium solution to the Boltzmann equation, i.e. the target suboptimal joint density in this context. For a given  $\epsilon$  and  $t>t_0$ , there exists finite  $n_0$ and K where the Wild expansion is bounded  $F^{P_r(n)}(x) < K$ , such that

$$|\rho - \rho^*| < K n_0 e^{-\hat{\alpha}t_0} + \frac{2}{3} \epsilon e^{-\hat{\alpha}t} \sum_{1}^{\infty} (1 - e^{-\hat{\alpha}t})^{n-1}$$
 (15)

# Randomized Swapping Algorithm

Input:  $X:=[X^{(1)},...,X^{(K)}]$  and tolerance  $\hat{\epsilon}$ repeat

for  $i = 1, \ldots, K$  do

Generate an even random list of particle indices R.

Decompose R into same-size subsets I and J where  $I \cap J = \varnothing$  and

 $|I| = |J| = |N_p/2|$ . for  $k = 1, ..., |N_p/2|$  do

if  $m(\hat{\pi}_t^{X_{I_k}^{(i)}\leftrightarrow X_{J_k}^{(i)}}) < m(\hat{\pi}_t)$  then

 $X_{I_k}^{(i)} \leftarrow X_{J_k}^{(i)}$  and  $X_{J_k}^{(i)} \leftarrow X_{I_k}^{(i)}$ .

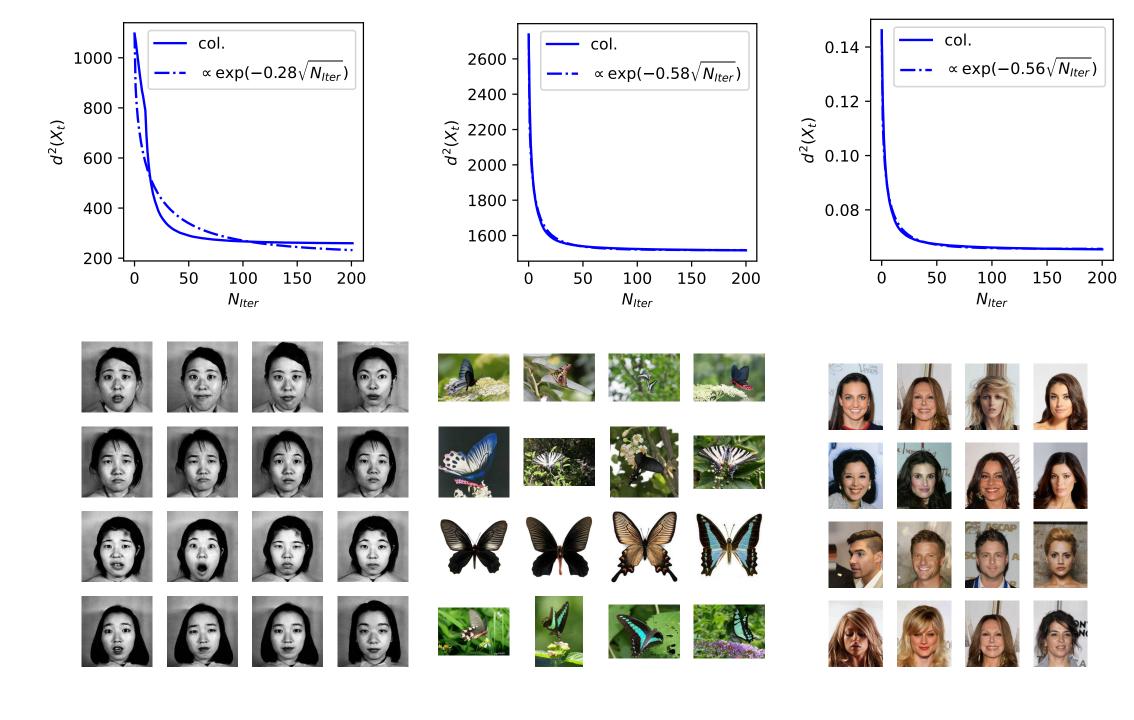
end if

end for end for

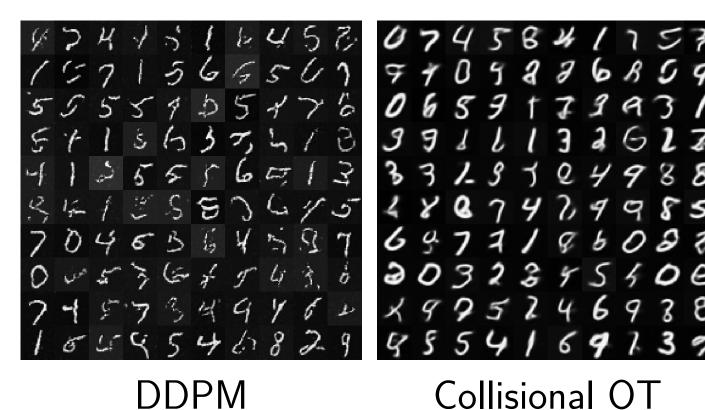
until Convergence in  $\mathbb{E}_{\hat{\pi}_t}[c(X_t^{(1)},...,X_t^{(K)})]$  with tolerance  $\hat{\epsilon}$ 

Output: X

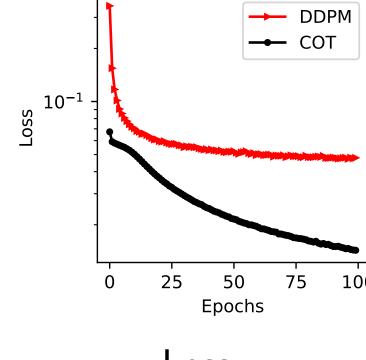
### Wasserstein Distance in Datasets



## Training Diffusion Model (U-Net)



Collisional OT



Loss