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MMOT Problem
Let P(Xi) be the space of non-negative Borel measures over Xi ⊂ Rn, and

P2(Xi) :=
{

µ ∈ P(Xi)
∣∣∣∣ ∫
Xi

∥x∥2
2µ(dx) <∞

}
(1)

with ∥.∥2 the L2-Euclidean norm. Consider K probability measures µi ∈ P2(Xi) with
i ∈ {1, ..., K}.

We are interested in the Multi-Marginal Optimal Transport problem (MMOT),
which seeks the minimization

πopt := arg min
π∈Π(µ1,...,µK)

∫
X

c(x1, ..., xK)π(dx) , (2)

where X is the product set X := X1 × ...×XK.

The MMOT optimization is constrained on Π, i,e., the set of coupling mea-
sures

Π(µ1, ..., µK) :=
{

π ∈ P2(X )
∣∣∣∣proji(π) = µi ∀i ∈ {1, ..., K}

}
(3)

and proji : X → Xi is the canonical projection. For simplicity, here we consider

c(x1, ..., xK) =
K∑

i=1

K∑
j=i+1

1
2
∥xi − xj∥2

2 (4)

as the cost function.

Main Idea
Swapping Algorithm.
For each marginal i ∈ {1, ..., K} and samples j, k ∈ {1, ..., Np} with k ≥ j, Iterated
Swapping Algorithm (ISA) updates the samples via

(X (i)
j,t+1, X

(i)
k,t+1)

T = Kj,k(X (i)
j,t , X

(i)
k,t)

T . (5)

The swaps are guided by the discrete cost

m(π̃t) = Eπ̃t
[c] (6)

where π̃t is the empirical measure of Xt. The swapping kernel is given by

Kj,k =

I2n×2n if m(π̃X
(i)
j ↔X

(i)
k

t ) ≥ m(π̃t)

J2n×2n if m(π̃X
(i)
j ↔X

(i)
k

t ) < m(π̃t)
(7)

with In×n as the identity matrix and J an exchange matrix of the form

J2n×2n =
[
0n×n In×n

In×n 0n×n

]
(8)

and 0n×n is a n× n matrix with zero entries.

Collision-based OT.
We propose a collision process that evolves an initial joint measure of {µ1, µ2} in a
fashion similar to binary collisions, where collisions refer to swapping the state of two
particles.

Let ρt be the time dependent density of the joint measure. An equivalent
collision operator of the Boltzmann-type can be described as

Q[ρt, ρt] =
∫
R2n

ρt(x1, y)ρt(x, y1)Ω(x, x1, y, y1)dx1dy1 − α(x, y)ρt(x, y), (9)

α(x, y) =
∫
R2n

ρt(x1, y1)Ω(x, x1, y, y1)dx1dy1 (10)

and the collision kernel reads

Ω(x, x1, y, y1) = H

(
c(x, y) + c(x1, y1)− c(x1, y)− c(x, y1)

)
(11)

where H(.) is the Heaviside function.

Heuristically, the kinetic model (9) describes a process where binary collisions
are only accepted if the cost c is decreased by the swaps between the two randomly
picked sample points.

Exponential Convergence
Let us consider the Cauchy problem

∂ρ

∂t
= P [ρ, ρ]− α̂ρ (12)

where P [ρ, ρ] is a bilinear operator, and α̂ ̸= 0 is a constant. The solution to the
Cauchy problem can be written as

ρ = e−α̂t
∞∑

k=0

(1− e−α̂t)kρk (13)

where ρk is given by the recurrence formula

ρk = 1
k + 1

k∑
h=0

1
α̂

P [ρh, ρk−h]. (14)

By defining P [ρ, ρ] := Q[ρ, ρ] + α̂ρ, formally we have limk→∞ ρk = limt→∞ ρ = ρ∗,
where ρ∗ is the equilibrium solution to the Boltzmann equation, i.e. the target sub-
optimal joint density in this context. For a given ϵ and t > t0, there exists finite n0
and K where the Wild expansion is bounded F Pr(n)(x) < K, such that

|ρ− ρ∗| < Kn0e
−α̂t0 + 2

3
ϵe−α̂t

∞∑
n=1

(1− e−α̂t)n−1 . (15)

Randomized Swapping Algorithm
Input: X := [X (1), ..., X (K)] and tolerance ϵ̂
repeat

for i = 1, . . . , K do
Generate an even random list of particle indices R.
Decompose R into same-size subsets I and J where I ∩ J = ∅ and
|I| = |J | = ⌊Np/2⌋.
for k = 1, . . . , ⌊Np/2⌋ do

if m(π̂
X

(i)
Ik
↔X

(i)
Jk

t ) < m(π̂t) then
X

(i)
Ik
← X

(i)
Jk

and X
(i)
Jk
← X

(i)
Ik

.
end if

end for
end for

until Convergence in Eπ̂t
[c(X (1)

t , ..., X
(K)
t )] with tolerance ϵ̂

Output: X
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