MESSY Estimation: Maximum Entropy based Stochastic and Symbolic densitY Estimation

Mohsen Sadr, Tony Tohme, Kamal Youcef-Toumi, and Nicolas Hadjiconstantinou

Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA

Maximum entropy distribution function

Given a vector of N_m moments, μ , one can find the parent density $f_{\mathbf{X}}$ in a least bias sense, by minimizing the Shannon entropy functional

$$C[\mathcal{F}(\boldsymbol{x})] := \int \mathcal{F}(\boldsymbol{x}) \log(\mathcal{F}(\boldsymbol{x})) d\boldsymbol{x} + \sum_{i=1}^{N_m} \lambda_i \left(\int H_i(\boldsymbol{x}) \mathcal{F}(\boldsymbol{x}) d\boldsymbol{x} - \mu_i(\boldsymbol{x}) \right) .$$

The extremum of this functional gives the maximum entropy density function

$$\hat{f}(\boldsymbol{x}) = \frac{1}{Z} \exp\left(\boldsymbol{\lambda} \cdot \boldsymbol{H}(\boldsymbol{x})\right), \qquad \text{where} \quad Z = \int \exp\left(\boldsymbol{\lambda} \cdot \boldsymbol{H}(\boldsymbol{x})\right) d\boldsymbol{x}.$$

The Lagrange multipliers λ_i , $i=1...N_m$, may be found using the unconstrained dual formulation $D(\lambda)$ with the gradient $g = \nabla D(\lambda)$ and Hessian $\boldsymbol{H}(\boldsymbol{\lambda}) = \nabla^2 D(\boldsymbol{\lambda})$ leading to an iterative scheme

$$\begin{array}{ll} \pmb{\lambda} \leftarrow \pmb{\lambda} - \pmb{L}^{-1}(\pmb{\lambda}) \pmb{g}(\pmb{\lambda}) \; , \\ \\ \text{where} & \pmb{g} = \pmb{\mu} - \frac{1}{Z} \int \pmb{H} \exp{(\pmb{\lambda} \cdot \pmb{H})} \, d\pmb{x} \\ \\ \text{and} & \pmb{L} = -\frac{1}{Z} \int \pmb{H} \otimes \pmb{H} \exp{(\pmb{\lambda} \cdot \pmb{H})} \, d\pmb{x}. \end{array}$$

Pros	Cons
✓ Least bias	$m{arkappa}$ III-conditioned Hessian $m{L}$
✓ Convex optimization problem	X Requiring an accurate
✓ Matching moments	numerical integration method

Finding Lagrange multipliers via Gradient flow

Consider a Gradient flow that transitions from $f_{m{X}}$ to an ansatz \hat{f}

$$\begin{split} \frac{\partial f_{\mathbf{X}}}{\partial t} &= \nabla_{\mathbf{x}} \left[\hat{f} \nabla_{\mathbf{x}} [f_{\mathbf{X}} / \hat{f}] \right] \\ &= -\nabla_{\mathbf{x}} \cdot \left[\nabla_{\mathbf{x}} \left[\log(\hat{f}) \right] f_{\mathbf{X}} \right] + \nabla_{\mathbf{x}}^{2} [f_{\mathbf{X}}]. \end{split}$$

Using integration by parts, integrability of density and existence of its moments, we obtain an equation for the relaxation rate of moments as

$$\underbrace{\frac{d}{dt} \left[\int \mathbf{H} f_{\mathbf{X}} d\mathbf{x} \right]}_{\mathbf{g} :=} = \int \nabla_{\mathbf{x}} [\mathbf{H}] \cdot \nabla_{\mathbf{x}} [\log(\hat{f})] f_{\mathbf{X}} d\mathbf{x} + \int \nabla_{\mathbf{x}}^{2} [\mathbf{H}] f_{\mathbf{X}} d\mathbf{x} .$$

By substituting maximum entropy ansatz, we obtain the relaxation rates (or gradient) using the samples

$$oldsymbol{g} = \underbrace{\sum_{i} \left\langle
abla_{x_i} [oldsymbol{H}(oldsymbol{X}(t))] \otimes
abla_{x_i} [oldsymbol{H}(oldsymbol{X}(t))]
ight
angle}_{oldsymbol{L}^{ ext{ME}} :=} oldsymbol{\lambda} + \sum_{i} \left\langle
abla_{x_i}^2 [oldsymbol{H}(oldsymbol{X}(t))]
ight
angle}_{i} \ .$$

At the steady-state, $f_{m{X}} o \hat{f}$, leading to $m{g} o m{0}$. Lagrange multipliers can be computed directly as

$$\boldsymbol{\lambda} = -(\boldsymbol{L}^{\text{ME}})^{-1} \Big(\sum_{i} \Big\langle \nabla_{x_i}^2 [\boldsymbol{H}(\boldsymbol{X}(t))] \Big\rangle \Big) .$$

Pros	Cons
✓ Least bias	$m{arkappa}$ III-conditioned matrix $m{L}^{ ext{ME}}$
✓ No optimization problem	
✓ Matching moments	
✓ Integrating using samples	

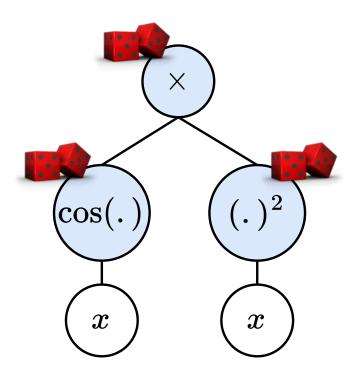
Examples of symbolic expressions for bi-modal problem

Method	
MESSY-P	$\hat{f}(x) = 0.288e^{-0.017x^{10} + 0.106x^9 - 0.084x^8 - 0.659x^7 + 1.209x^6 + 1.179x^5 - 3.722x^4 + 0.075x^3 + 2.693x^2 - 0.612x}$
MESSY-S	$\hat{f}(x) = 0.993e^{-1.85x^2 - 1.162x\cos(1.5x) + 0.232x - 0.652\cos(x) - 0.424\cos(2x) - 0.591\cos(3.5x) + 0.47\cos(\cos(3.5x))}$

Table 1: Example of expressions obtained for the bi-modal problem using MESSY with polynomial (MESSY-P) and randomly created basis functions (MESSY-S).

Symbolic exploration for an optimal basis function

We perform a Monte Carlo and symbolic search in the space of smooth functions constructed using an expression tree to find a vector of basis functions $m{H}$ that guarantee small $\mathrm{cond}(m{L}^{\mathrm{ME}})$. Here, we also impose the necessary condition that the basis function with the highest growth rate is even.



Example: $x^2 \times \cos(x)$

Pros	Cons
✓ Least bias	X Additional cost of symbolic acc./rej.
✓ No optimization problem	
✓ Matching moments	
✓ Integration using samples	
✓ Well-conditioned matrix $m{L}^{ ext{ME}}$	

Results

We compare MESSY estimate using polynomials (MESSY-P) and randomly created basis functions (MESSY-S) to kernel density estimation and the maximum cross-entropy distribution function with Gaussian as the prior. As the test case, here we consider bi-modal distributions that are far from Gaussian.

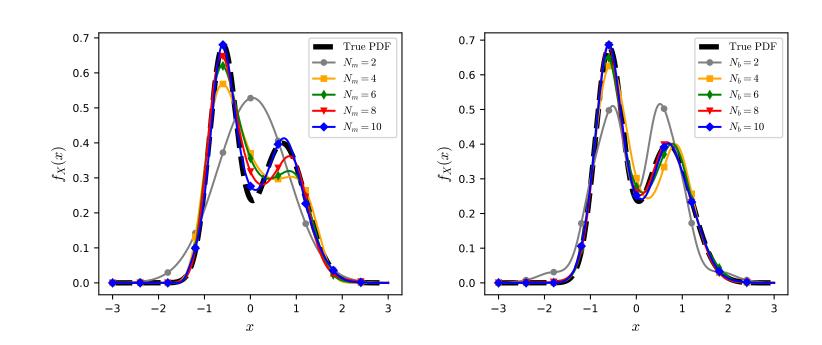


Figure 1: Convergence of MESSY estimation to target distribution function by (left) increasing the order of polynomial basis functions N_m or (right) increasing the number of random basis functions N_b with highest order $\mathcal{O}(x^2)$.

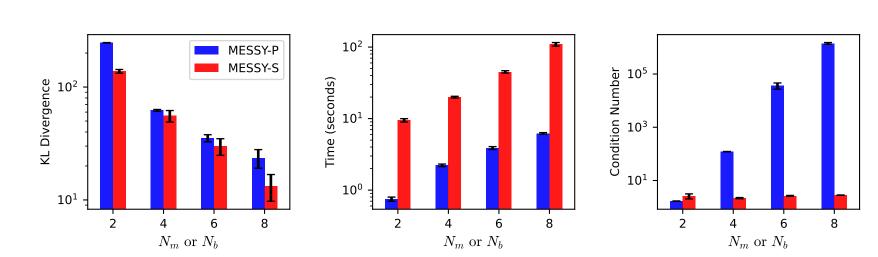


Figure 2: KL Divergence (left), execution time (middle) and condition number (right) against the degrees of freedom, i.e. the number of moments N_m for MESSY-P and the number of basis functions N_b with highest order $\mathcal{O}(x^2)$ for MESSY-S.

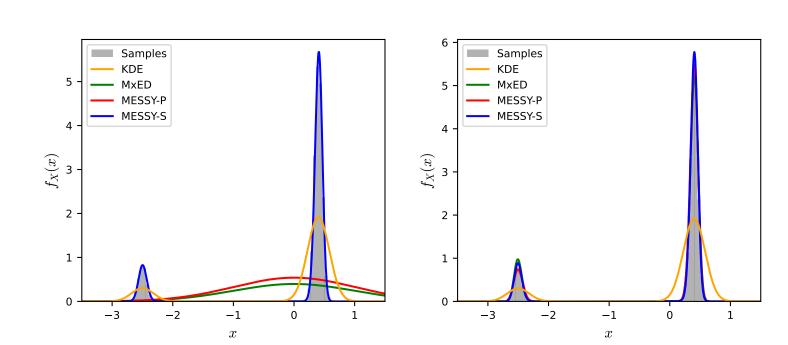


Figure 3: Estimating density for border case from samples using KDE, MxED, MESSY-P, and MESSY-S using basis functions with a growth rate of leading term up to $\mathcal{O}(x^2)$ (left) and $\mathcal{O}(x^4)$ (right)

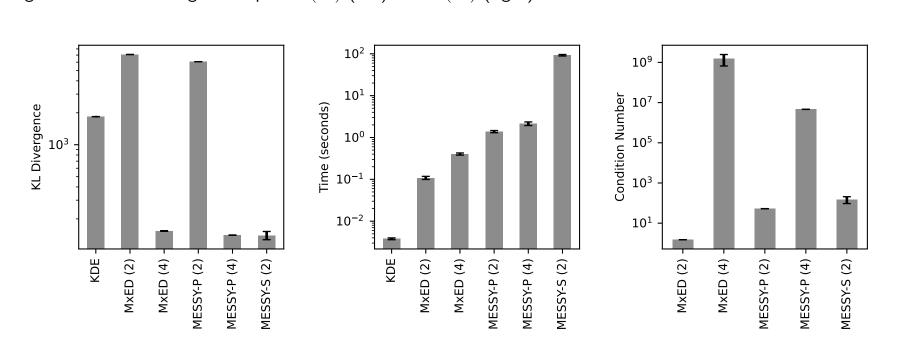


Figure 4: Comparing KL Divergence (left), execution time (middle), and condition number (right) for KDE, MxED, MESSY-P, and MESSY-S estimate of density in the limit of the realizability. Here, we consider matching moments up to $N_m=2,4$ for MxED and MESSY-P denoted by MxED (2), MxED (4), ..., while matching only up to $N_m = 2$ for MESSY-S.