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Maximum entropy distribution function

Given a vector of Nm moments, µ, one can find the parent density fX in a
least bias sense, by minimizing the Shannon entropy functional

C[F(x)] :=
∫
F(x) log(F(x))dx +

Nm∑
i=1

λi

(∫
Hi(x)F(x)dx− µi(x)

)
.

The extremum of this functional gives the maximum entropy density function

f̂ (x) = 1
Z

exp (λ ·H(x)) , where Z =
∫

exp (λ ·H(x)) dx.

The Lagrange multipliers λi, i = 1...Nm, may be found using the uncon-
strained dual formulation D(λ) with the gradient g = ∇D(λ) and Hessian
H(λ) = ∇2D(λ) leading to an iterative scheme

λ← λ−L−1(λ)g(λ) ,

where g = µ− 1
Z

∫
H exp (λ ·H) dx

and L = − 1
Z

∫
H ⊗H exp (λ ·H) dx.

Pros Cons
✓ Least bias ✗ Ill-conditioned Hessian L
✓ Convex optimization problem ✗ Requiring an accurate
✓ Matching moments numerical integration method

Finding Lagrange multipliers via Gradient flow

Consider a Gradient flow that transitions from fX to an ansatz f̂

∂fX

∂t
= ∇x

[
f̂∇x[fX/f̂ ]

]
= −∇x ·

[
∇x

[
log(f̂ )

]
fX

]
+∇2

x

[
fX

]
.

Using integration by parts, integrability of density and existence of its mo-
ments, we obtain an equation for the relaxation rate of moments as

d

dt

[ ∫
HfXdx

]
︸ ︷︷ ︸

g :=

=
∫
∇x[H ] · ∇x[log(f̂ )]fXdx +

∫
∇2

x[H ]fXdx .

By substituting maximum entropy ansatz, we obtain the relaxation rates (or
gradient) using the samples

g =
∑

i

〈
∇xi[H(X(t))]⊗∇xi[H(X(t))]

〉
︸ ︷︷ ︸

LME :=

λ +
∑

i

〈
∇2

xi
[H(X(t))]

〉
.

At the steady-state, fX → f̂ , leading to g → 0. Lagrange multipliers can
be computed directly as

λ =− (LME)−1
( ∑

i

〈
∇2

xi
[H(X(t))]

〉)
.

Pros Cons
✓ Least bias ✗ Ill-conditioned matrix LME

✓ No optimization problem —
✓ Matching moments —
✓ Integrating using samples —

Examples of symbolic expressions for bi-modal problem
Method Obtained density
MESSY-P f̂ (x) = 0.288e−0.017x10+0.106x9−0.084x8−0.659x7+1.209x6+1.179x5−3.722x4+0.075x3+2.693x2−0.612x

MESSY-S f̂ (x) = 0.993e−1.85x2−1.162x cos (1.5x)+0.232x−0.652 cos (x)−0.424 cos (2x)−0.591 cos (3.5x)+0.47 cos (cos (3.5x))

Table 1: Example of expressions obtained for the bi-modal problem using MESSY with polynomial (MESSY-P) and randomly
created basis functions (MESSY-S).

Symbolic exploration for an optimal basis function
We perform a Monte Carlo and symbolic search in the space of smooth func-
tions constructed using an expression tree to find a vector of basis functions
H that guarantee small cond(LME). Here, we also impose the necessary
condition that the basis function with the highest growth rate is even.

Pros Cons
✓ Least bias ✗ Additional cost of symbolic acc./rej.
✓ No optimization problem —
✓ Matching moments —
✓ Integration using samples —
✓ Well-conditioned matrix LME —

Results
We compare MESSY estimate using polynomials (MESSY-P) and randomly
created basis functions (MESSY-S) to kernel density estimation and the max-
imum cross-entropy distribution function with Gaussian as the prior. As the
test case, here we consider bi-modal distributions that are far from Gaussian.
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Figure 1: Convergence of MESSY estimation to target distribution function by (left) increasing the order of polynomial basis
functions Nm or (right) increasing the number of random basis functions Nb with highest order O(x2).
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Figure 2: KL Divergence (left), execution time (middle) and condition number (right) against the degrees of freedom, i.e. the
number of moments Nm for MESSY-P and the number of basis functions Nb with highest order O(x2) for MESSY-S.
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Figure 3: Estimating density for border case from samples using KDE, MxED, MESSY-P, and MESSY-S using basis functions
with a growth rate of leading term up to O(x2) (left) and O(x4) (right).
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Figure 4: Comparing KL Divergence (left), execution time (middle), and condition number (right) for KDE, MxED, MESSY-P,
and MESSY-S estimate of density in the limit of the realizability. Here, we consider matching moments up to Nm = 2, 4 for
MxED and MESSY-P denoted by MxED (2), MxED (4), ..., while matching only up to Nm = 2 for MESSY-S.


