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I. Introduction
Probabilistic description of dense fluids with Sutherland potential
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far from equilibrium can be described by Enskog-Vlasov Eq. [1]
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where collisions are incorporated with Enskog operator
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and long-range forces are included via ξi = ∂xiU where

U(x, t) =
∫
r>σ

φ(r)n(y, t)d3y .

Challenges:
1. Resolving collision operator is costly.
2. Long tail Vlasov integral restricts computation of attractive forces.

II. Modelling long range interactions

Idea:
∣∣∣∣ i. Modeling attractive part of φ(r) with Green function of an elliptic PDE.
ii. Solve the PDE globally instead.

Model: approximate φ(r) by φ̃(r) = aG(r) with

G(r) = e−λr

4πr

where a and λ are obtained from

(a, λ) = argmin
r∈(σ,∞)

(||∂rφ(r)− ∂rφ̃(r)||2) .

Rewrite the potential U(x, t) as

U(x, t) ≈a
∫
r>0

G(r)n(y, t)d3y︸ ︷︷ ︸
u(x,t)

− a
∫
r<σ

G(r)n(y, t)d3y︸ ︷︷ ︸
Ũr<σ

.
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Figure 1: Lennrad-Jones molecular po-
tential φLJ(r) along with Sutherland
φ(r) and the Coulomb-type potential
φ̃(r) for Argon with ε = 119.8kb and
σ = 3.405× 10−10m.

The first term u(x, t) is the fundamental solution to Screened-Poisson (SP) Eq.(
∆− λ2)u(x, t) = n(x, t); (∀x ∈ R3)

and Ũr<σ can be approximated assuming regularity on density for r ∈ (0, σ) [4].

The long range potential can be computed using efficient Poisson solvers.
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Figure 2: Normalized profiles of temperature and number density of two droplets and the vapour between
obtained via DFP-SP model where Thot = 95 K while Tcold = 80, 85 and 90 K.

III. Fokker-Planck model for dense gases

Idea:

∣∣∣∣∣∣∣∣∣
i. Approximate jump process with a continuous one.

needed−−−→ relaxation rates
ii. Include dense effects with spatial drift.

needed−−−→ collisional transfer

i. Relaxation rates of Enskog operator are

∂πij
∂t
|coll = −Y p

µkinπij & ∂qi
∂t
|coll = −Y 2

3
p

µkinqi .

ii. Collisional transfer Ψφ appearing in the velocity moments of Enskog equation∫
ψ
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)
d3v = −∂Ψφ

i

∂xi

has explicit form up to second order term.
Model: a Fokker-Planck model for Dense gases (DFP) can be designed [3]

SDFP(F) = −∂(FAi)
∂vi

+ 1
2
∂2(D2F)
∂vj∂vj︸ ︷︷ ︸

ensures consistent relaxation rates

− ∂(FÂi)
∂xi︸ ︷︷ ︸

spatial drift

to approximate Enskog operator with a spatial drift Â which is closed by

∂

∂xi

∫
ÂiψFd3v = ∂Ψφ

i

∂xi
.

Efficient particle methods for the equivalent SDEs can be used.

Once A, Â and D are sampled, the random variables for velocity V and position X are
evolved via Itō process {

dV = Adt + DdWt ,

dX = Âdt + V dt .
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Figure 3: Temperature contours along with heat fluxes of a lid-driven cavity flow with wall velocity of
300 m/s at Kn = 0.1 using (a) DFP model and (b) Enskog Simulation Monte Carlo (ESMC) method [2].

IV
.b

Evaporation

50 60 70

x2/σmin [−]

0.0

1.0

2.0

3.0

n
σ

3 m
in

[−
]

Screened-Poisson

init.

Direct

MD

50 60 70

x2/σmin [−]

0.4

0.5

0.6

0.7

0.8

0.9

T
/T

c
[−

]

Direct

Screened-Poisson

MD

Figure 4: Normalized density and temperature profiles for the evaporation of liquid argon to vacuum at
Tinitial = 0.8 Tc. Here, ESMC [2] is used to solve the collision operator while the the Vlasov integral is com-
puted using the direct method and screened-Poisson model [4], respectively. Furthermore, good agreement
with Molecular Dynamics (MD) result is observed. Note that Tc = 124.1367 K and σmin = 21/6σ.
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